Zooplankton Gut Passage Mobilizes Lithogenic Iron for Ocean Productivity

نویسندگان

  • Katrin Schmidt
  • Christian Schlosser
  • Angus Atkinson
  • Sophie Fielding
  • Hugh J. Venables
  • Claire M. Waluda
  • Eric P. Achterberg
چکیده

Iron is an essential nutrient for phytoplankton, but low concentrations limit primary production and associated atmospheric carbon drawdown in large parts of the world's oceans [1, 2]. Lithogenic particles deriving from aeolian dust deposition, glacial runoff, or river discharges can form an important source if the attached iron becomes dissolved and therefore bioavailable [3-5]. Acidic digestion by zooplankton is a potential mechanism for iron mobilization [6], but evidence is lacking. Here we show that Antarctic krill sampled near glacial outlets at the island of South Georgia (Southern Ocean) ingest large amounts of lithogenic particles and contain 3-fold higher iron concentrations in their muscle than specimens from offshore, which confirms mineral dissolution in their guts. About 90% of the lithogenic and biogenic iron ingested by krill is passed into their fecal pellets, which contain ∼5-fold higher proportions of labile (reactive) iron than intact diatoms. The mobilized iron can be released in dissolved form directly from krill or via multiple pathways involving microbes, other zooplankton, and krill predators. This can deliver substantial amounts of bioavailable iron and contribute to the fertilization of coastal waters and the ocean beyond. In line with our findings, phytoplankton blooms downstream of South Georgia are more intensive and longer lasting during years with high krill abundance on-shelf. Thus, krill crop phytoplankton but boost new production via their nutrient supply. Understanding and quantifying iron mobilization by zooplankton is essential to predict ocean productivity in a warming climate where lithogenic iron inputs from deserts, glaciers, and rivers are increasing [7-10].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean.

Fluxes of lithogenic material and fluxes of three palaeo-productivity proxies (organic carbon, biogenic opal and alkenones) over the past 100,000 years were determined using the (230)Th-normalization method in three sediment cores from the Subantarctic South Atlantic Ocean. Features in the lithogenic flux record of each core correspond to similar features in the record of dust deposition in the...

متن کامل

Simulations of Marine Ecosystem Response to Climate Variation with a One Dimensional Coupled Ecosystem/Mixed Layer Model

Existing observations are inadequate to identify and to understand the processes by which oceanic and atmospheric variability affect the marine biota at climate scales. To aid in the identification and study of important processes, we employ a one-dimensional coupled mixed layer / planktonic ecosystem (Nutrient-Phytoplankton-Zooplankton-Detritus) model of the subarctic Pacific Ocean. Increasing...

متن کامل

The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean)

The northern Scotia Sea contains the largest seasonal uptake of atmospheric carbon dioxide yet measured in the Southern Ocean. This study examines one of the main routes by which this carbon fluxes to the deep ocean: through the production of faecal pellets (FPs) by the zooplankton community. Deep sediment traps were deployed at two sites with contrasting ocean productivity regimes (P3, natural...

متن کامل

The Biological Productivity of the Ocean

Ocean productivity largely refers to the production of organic matter by “phytoplankton,” plants suspended in the ocean, most of which are single-celled. Phytoplankton are “photoautotrophs,” harvesting light to convert inorganic to organic carbon, and they supply this organic carbon to diverse “heterotrophs,” organisms that obtain their energy solely from the respiration of organic matter. Open...

متن کامل

The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves

[1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016